Delaware River Basin Commission

Implementation of the PCB TMDLs in the Delaware Estuary and Bay

Gregory J. Cavallo, P.G.

Delaware River Basin Commission
DELAWARE * NEW JERSEY
PENNSYLVANIA * NEW YORK
UNITED STATES OF AMERICA

2017

Point Source Requirements Stage 1 TMDLs

- Implementation requirements focused on point sources. Requirements consisted of:
 - Monitoring using a sensitive analytical method (Method 1668A) for all 209 congeners.
 - Develop and implement a Pollutant Minimization Plan (PMP) to identify and reduce sources of PCBs.

Outline

- Data Quality Objectives
 - Sampling
 - Analysis (Method 1668A)
- Pollutant Minimization Plan (PMP)
 - Key Elements
 - Other Analytical Methods (for Trackback)
 - Effective Trackback Efforts
- Overall Results and Conclusions

Standardized Data Quality Objectives

Reduce analytical uncertainty and improve comparability between samples by:

- Establishing sample collection and identification protocols
- Specifying DRBC project specific analytical (Method 1668A) and reporting protocols to achieve detection limits in the single pg/L range
- Establishing Method and Rinsate blank contamination acceptability criteria
- Incorporating all data into an Access database

Monitoring Resources http://www.nj.gov/drbc/quality/toxics/pcb.html

Benefits of Standardized Sampling and Analysis

- Greater accuracy in estimated loadings
 - Including fingerprinting and evaluation of trackback efforts
- Increased modeling accuracy
- More accurate long-term trends analysis
- Better temporal and spatial evaluation of data
- Data reliability and transferability

Pollutant Minimization Plans (PMPs) Initial Plan Elements

- Good Faith Commitment
- 2. Facility and Contact Information
- 3. Facility Description
- 4. Known Sources
- 5. Potential Sources
- 6. Strategy for Identify Unknown Sources (Track-Down)
- 7. Previous Minimization Activities
- 8. Recommendation for Action Under Other Regulatory Programs
- 9. Pollutant Minimization Measures
- 10. Source Prioritization
- 11. Key Dates
- 12. Measuring, Demonstrating, and Reporting Progress
- 1号。References

PMP Resources: http://www.nj.gov/drbc/programs/quality/pmp.html

PMP Review

- The Commission jump started the PMP process by requiring 42 discharges to develop initial PMPs beginning in 2005 using it own authority.
- Subsequent PMP requirements were incorporated into NPDES permits as were the continuation of existing PMPs originally required by the Commission.
- Initial PMP reviews were undertaken by Commission staff and subsequently by State representatives and if adequate, a completeness determination letter was issued and the PMP clock started

Preparation and Submission of a PMP Annual Report

Main Elements in the Annual Report:

- 1. PMP Achievement Executive Summary
- 2. Revisions to PMP
- 3. Material and Process Modifications
- 4. Measures to Address Known, Probable, and Potential Sources
- Incremental and Cumulative changes from the baseline loading
- 6. Tabular Summary

PMP Implementation Approaches

- Identify known PCB sources
 - Transformers and switches
 - Hydraulic fluids
 - lubricants, gasket sealers, paints, plasticizers, adhesives,
- Remove pathways for contaminated solids/capturing solids
 - Stormwater controls, geotextile filters
- Cleaning sediment from interceptors and pump stations
- Increasing solids removal from municipal/industrial discharges
- Identify potential inadvertent PCB production

Trackback Approaches

- Develop strategy for collecting samples "upstream" of discharge to more accurately identify areas of concern
- Review pretreatment and residual program permits to identify potential sources of PCBs
- Identification of PCB contaminated sites using
 - EPA and State lists
- Use The North American Industry Classification System (NAICS) to identify potential sources
- Use Geographical Information System (GIS) approach to focus trackback efforts

Point Source Monitoring

Since 2005 monitoring using 1668A was required of all dischargers using a standardized approach

PMP development was required either through NPDES permits or directly through Commission regulations beginning in 2005

Top Ten PCB Point Source Loading Revisited

Top 90% of all P.S. Loadings	
(2005)	Loadings mg/day (2005)
Valero Refining	11,047
U.S. Steel	7,008
PWD-NE	4,049
PWD-SW	3,141
City of Wilmington	2,723
PWD-SE	1,431
Dupont-Chamber Works	945
CCMUA	921
Trenton	664
Dupont-Repauno	463
Total	32,391

Conclusions

- The Implementation of the PCB TMDL in the Delaware Estuary and Bay has been successful. Essential elements include:
 - Requiring consistent monitoring (Method 1668A) and reporting methodologies and a centralized database management system
 - Implementation of PMPs which provide a framework for evaluating PCB loadings and subsequent reductions by:
 - Identifying and removing active sources
 - Trackdown of legacy contamination and implementation of remedial measures
 - Review of annual reports and providing feedback to dischargers thereby fostering a environment of collaboration through open discussion and dissemination of information

Gregory J. Cavallo, P.G.
Science and Water Quality Management

gregory.cavallo@drbc.nj.gov

(609) 477-7270

